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ABSTRACT

In this paper we develop the mathematical theory of proportional and scale change models

to perform reliability analysis. The results obtained will be applied for the reaction Control

System (RCS) thruster valves on an orbiter. With the advent of extended EVA's
associated with PROX OPS (ISSA & MIR), and docking, the loss of a thruster valve now

takes on an expanded safety significance. Previous studies assume a homogeneous

population of components with each component having the same failure rate. However, as

various components experience different stresses and are exposed to different

environments, their failure rates change with time.

In this paper we model the reliability of a thruster valves by treating these valves as a

censored repairable system. The model for each valve will take the form of a

nonhomogeneous process with the intensity function that is either treated as a proportional

hazard model, or a scale change random effects hazard model. Each component has an

associated z, an independent realization of the random variable Z from a distribution G(z).

This unobserved quantity z can be used to describe heterogeneity systematically.

For various models methods for estimating the model parameters using censored data will

be developed. Available field data (from previously flown flights) is from non-renewable

systems. The estimated failure rate using such data will need to be modified for renewable

systems such as thruster valve.
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INTRODUCTION

In this paper we develop the mathematical theory of proportional and scale change models

to perform reliability analysis. The results obtained will be applied for the Reaction

Control System (RCS) thruster valves on a space vehicle. With the advent of extended

EVA's associated with PROX OPS (ISSA & MIR), and docking to space station, the loss

of a thruster valve now takes on an expanded safety significance. RCS thruster valves are

installed on the orbiter at 38 locations, 14 in front (Forward) and 24 in the rear (Aft), 12

on each side. At each location there is a fuel valve and an oxidizer valve. Thus there are a

total of 76 valves on an orbiter. These inlet valves can leak due to various reasons. These

include the shrinkage of the teflon seal due to extreme weather conditions, reduction in the

teflon seal height above the seal retainer, and contamination deposits between the valve

seat and poppet face. The mixing of moist air and residual oxidizer (N204) form metallic

nitrates. It is believed that the metallic nitrates cause deposits to build up in the valves.

The orbiter thruster valves have at least three failures modes. These are: (1) Nitrate build

up so that the valve will not open flAIL-OFF/CLOSED); (2) Nitrate deposits on the seat

causes leaks and the valve will not close (FAIL-OFF/OPEN); and (3) Spontaneous leaks

(FAIL OFF/LEAKS). The number of times a valve is opened or closed provide an

indication of the amount of fluid flow which may be related to the contamination failure

mechanism. Also, the amount of fluid each valve is subjected to varies substantially From

each location. In the past several studies have been done in an attempt to estimate valve

reliability. Studies done at Rockwell Aerospace have used cycle time as the casual

variable, while studies done at JSC have used soak time as the casual variable. Only one

variable was used in both of these studies since standard statistical computer models treat

only one variable. In this paper we develop new statistical theory based on both variables.

Also, previous studies assume a homogeneous population ofc, omponents with each

component having the same failure rate. However, as various components experience

different stresses and are exposed to different environments, their failure rates can change

across the population of components. Techniques which ignore the heterogeneity can

result in incorrect estimates of failure distributions.

We propose to model the reliability of the thruster valves by treating these valves as a

censored repairable system. The system is repairable since valves that either leak or stick

are removed, repaired and placed back in operation. Censoring occurs whenever the time-
to-failure records are terminated before each valve has had a chance to fail. The model for

each valve will take the form ofa nonhomogeneous process with the intensity function

that is either treated as a proportional hazard model, or a scale change random effects
hazard model.
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The proportional hazard function model will assume that the time the valve is soaked in
the oxidizer prior to failure is the primary variable that describes the base hazard function

and that the cycle time, and perhaps other variables, adjust this hazard. The scale change
random effects model will also assume that there is a soak-time-hazard function for each

valve, but in this case cycle time and other variables will be used to randomly scale the

soak time.

Thus for a given Z=z, the cumulative hazard function for proportional change and scale

change models are given respectively by,

H(t / Z-z) = z H(t), and H(t / Z=z) = H(zt),

where H(t) is an unobserved cumulative baseline hazard function. Thus each component

has an associated z, an independent realization of the random variable Z from a

distribution G(z). This unobserved quantity z can be used to describe heterogeneity

systematically. This variable z may represent environmental influences on different

components, effects of microgravity, effect of location of components on the orbiter, and
various other risk factors.

For each of these models methods for estimating the model parameter using censored

field data will be developed. The model which appears to best forecast failures of the

Orbiter's RCS thruster valves will then be selected as the appropriate model.

To estimate the component life for components on a space vehicle (such as ISSA), one
needs to understand the mechanism that cause the failures of the components and

component types. Ideally each component with a different vintage should be put on test

under environmental and operational conditions identical to those under which it is to be

operated, and time to failure be observed. This experiment needs to be repeated a number

of times to get a reasonable size statistical sample. However it is not possible to conduct

meaningful life tests on earth because of not being able to replicate the proper stress

environment and also because of cost. Thus, the only available data on failure of

components in microgravity is the field data obtained from previously flown spacecra__'s.

This data needs to be adjusted because:

1. The available data is from non-renewable systems, i.e., a failed component is not

replaced. The failure rate distributions estimated using such data will need to be modified

for renewable systems such as ISSA.

2. Previous studies use the field data collected from sixties, seventies and eighties, and

conclude that design and environment are the main contributors to failure. Assuming that

how to design and knowledge about environment has improved substantially since sixties,

this data need to be examined carefully.
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MIXTURE MODELS UNDER HETEROGENEITY

It is generally accepted that the lifetime &electronic components can be described by an

exponential probability distribution, that is,

f(t) = 2.e-_',t >-0,2 > 0 (1)

where 2 is a parameter which is the hazard rate. This model assumes constant failure rate

for each component. However, in most cases the failure rate-age characteristic may rise or

fall in addition to remaining constant. A probability distribution which can represent any

form of failure rate-age curve is the Weibull distribution. The probability density function

of this distribution is given by

f(t) = -_,-ff,a(')a-t'e-(_/ , t>_0,fl, r/ >0 (2)

Exponential distribution (1) is a special case when fl =1. The cumulative distribution

function, survival function S(t), and hazard function are given respectively by

F(t) = 1 - e -(_' ;S(t) = 1 - F(t);andh(t) = £(,__B-,
q ,,rlJ

These models assume a homogeneous population of components with each component

having the same failure rate. However, as various components on the orbiter are exposed

to different environments and experience different stresses, their failure rates can change

across the population of component types. In this paper we develop proportional and scale

change models when the life-time distribution is given by (2). The failure model for each

component will take the form of a non-homogeneous process with intensity function that

is either treated as a proportional hazard model, or a scale change random effects hazard

model.

Proportional Hazard Model

Under this model the lifetime of a component, T, has the cumulative hazard function,

H(t / Z=z) = z H(t), where H(t) is an unobserved baseline cumulative hazard function,

the same for each component. Each component has an associated z, an independent

realization ofa r.v. Z from a distribution G(z). This variable z (possibly a vector) can

represent environmental influences on different components, effects of microgravity,
effects &location on the orbiter, and various other risks factors. This unobserved quantity

z can be used to describe heterogeneity systematically.
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CaseI:

Let g(z) r-_(x.-) e ,+ >0,A.,.r > 0,then, (3)

S(t) = E, S(t/Z--z) J'e -_(_)'= r-_(A .:)'-*e-_d=
0

and,

r

w

h(t) = - _logS(t)= (4)

when t= 7/ , the characteristic life is given by,

• #
h(t)- +++,

We note from (4) that for given r, #, rl,_,,, h(t) +-> 0 as t gets large.

Case II:

Let g(z) = 1, 0< z < 1. (5)

In this case,

1-e -('_' a ,6.(_)a-i .e -(_'

S(t) = (_)B , and h(t) - ' l-e -(;y" (6)

We note that h(t)l---> 0 as t gets large.

Case III: Let g(z) be a 2 -point distribution, i.e.

P(Z=zt) = p ; P(Z = z2) = l-p (7)

then,

S(t) = p e-" (+_')' -" '- '.+ (l-p). e ":<')

The expression for the hazard rate, h(t), is lenghty, but can be obtained easily. Also, it

can be shown that h(t) v-+ 0, as t gets large.

25-6



Scale change Hazard Models

Under the scale cahnge hazard model the lifetime, T, has the cumulative hazard function,

H(t / Z=z) = H(zt), where H(t) is an unobserved baseline hazard function, the same for

all components. In this case,

S(t / Z=z) = e -HC:') and S(t) = ie -H<:') dG(z), (8)
0

Case I:

Let Z has the gamma distribution given by (3), then from (8)

S(t) i e-"(_>" . d log S(t) can be computed and= .r-._(_.z)'-Ie-_dz, andh(t) = _-
o

the resulting integral can be evaluated numerically.

Case II:

Let Z has the Weibull distribution given by (2) with r/replaced by 6. In this case,

a (t_a-t

S(t)= a'[(_)' +(I)'] ' and h(t)- (_t) p +(_),

we note that h(t) _ 0 as t gets large.

Case III:

Let Z has the uniform distribution given by (5). In this case,

i [e"lS(t) = e -''_dz, and h(t)= t_ l S_
o

(9)

(I0)

S(t) needs to be evaluated numerically. It can be shown that h(t)_ 0 as t gets large.

Case IV:

Let Z has the 2-point distribution given by (7). In this case

h(t) = fl.t p-' pz, ae -:&_' +(l-p)._., e , (11)

Where zt .z2 are particular values of Z. It is clear from (11) that h(t) _ 0 as t gets large.
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A Regression Model

Assume that for a given value z of a random variable Z, the regression of logT on

linear, that is,

logT = loga + b Iogz +logz

where a is a constant. From (12) T = a zbe,

(12)

S(t/z) = P(T > t/z) = P(_' > _/z), and

log z is

S(t) = I PCe > _-_)-g(z)dz, (13)

where g(z) is the density of Z. This integral can be evaluated either analytically or

numerically depending on the form of the densities of e and z. Assuming c has a Weibull

(8,1"/) distribution, the survival function S(t) is given by,

S(t) I e-' _t-_''')"= g(z) dz = Ie-Ve_nmg(z)dz,

where g(z) is the density ofz, _P(z) is a function ofz only, and H(t) does not depend on

z. We note that both proportional hazard and scale change hazard models are special

cases, when _F(z) = z, and LF(z) = z _ respectively.

Case 1:

_), _c-
Let g(z) -- r-_" (._) `1÷1e ' (inverted gamma). In this case survival function S(t) is

given by

S(t)- r(a) e L o,_ l(zi)x*'dz
o

(14)

This integral can be evaluated numerically. In a special case when b//'=1, the expression in

(14) can be simplified, that is,

,1

set)= : 2;-u 
I

where/., = (at/);. From this, we get

h(t) = A'ti-', , (15)

b(t _ + q_. /.I)

which approaches zero as t gets large
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CaseII:
If loge isdistributedasa n(O,or-'), then e has the iognormal distribution. In this case,

S(t/z) = P( T> t/z) = P( e > ._-_/ : )

= l-O[-}(Iogt-loga-blogz)],

where • (z) is the distribution function of the standard normal, and we get

S(t) = !! 2,_. cr(x + log ___..,) dxdz, (16)

where x = e - log,'-?'..,. This integral can be computed numerically, and then h(t) can be

computed.

Applications to RCS Thruster Valves

As stated in the introduction, previous studies to estimate the reliability ofa RCS thruster

valve use either cycle time or soak time as the casual variable. It is quite possible that

each of these two variables has a substantial effect on the valve contamination

mechanism. It is also possible that other factors such as, location of valve on the orbiter,

also contribute to failure mechanism. A preliminary analysis using logistic function can be

used to decide which of the two independent variables has major effect on the

contamination failure mechanism.. Let S denote the Soak time and C denote the cycle

time, and define P(s,c) denote the probability of a valve failure for a given S=s and C=c.

The logistic regression model assumes that the log(odds) is a linear function of

independent variables. This procedure can be performed as follows:

Step 1.
Use data to fit 3 logistic functions independently:

log (p(s,c) / (1-p(s,c)) = a + 13s + _ c (17)

Iog(p(s) / (1-p(s)) = (x + [3s (18)

log(p(c)/ (l-p(c)) = co+ qbc (19)

Step 2
For each model compute the lack of fit statistic G 2 (with corresponding d.f.)

Denote G 2 by Gi2 for model (16+i), i= 1, 2, 3
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Step 3

3a. If G2 2

3b If G3 2

gives a good fit, then soak time is important independent variable

gives a good fit, then cycle time is important independent variable

Step 4

4a. To test the hypothesis of 'no cycle time effect'

compute G22 - Gt _ [increase in G 2 in using model (18) instead of(17)]. This

difference is asymptotically distributed chi-squared with 1 d.£

4b. To test for ' no soak time effect' compute (33z - GI 2, again this

difference is asymptotically distributed chi-squared with 1 fl.£

Step 5

If both hypotheses in step 4a and 4b are rejected and GI 2 indicates a good fit,

then we conclude that both independent variables are contributing to failure.

For the remainder of this section, let the variable T denote the Soak time and the variable

Z denote the cycle time. Various models developed in this report can be used to estimate

the reliability of RCS thruster valves. In particular, ifT is weibuU and z has a gamma

distribution, then the hazard rate is given by equation (4).

As mentioned before, with the advent of extended EVA's and docking, a growing interest

in the field performance of RCS thruster valves has developed. The reliabifity and safety

requirements for the space shuttle program, have emphasized the need for adequate

statistical methods for obtaining reliable safety guarantees. To achieve this objective, we

need reliable sample data from various RCS thruster valves systems. Available field failure

data on these valves is from a number of individual systems, each characterized by a serial

number. The system may be put into, or taken out of, operation at different times. For

each thruster valve, its (censored) life history which contains the following information is

available:

• The time when the valve was put into operation.

• The location of the valve on the orbiter.

• New or flushed valve

• The time when the valve failed.

• The time periods when the system was temporarily put out of

operation (down periods).

The location information is necessary if the objective is to find a location (or locations) on

the orbiter where valves are more likely to fail.

The Maximum Likelihood procedure is a powerful method of estimating parameters in
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statistics. However, due to censoring, the likelihood function in this case will include:

a. a set of lifetime observations

T1,T2,T3, - - -,Tsl

for those valves which have been replaced after failing; and

b. a set of right censored observations

T:, T:, T3 °, --- ,T_"

for the valves that survived the flight time. Then the estimation is equivalent to fitting the

parameters to the mixture distribution, so that the estimate 0 =(13, _, ;L, "t) is obtained as

the value of 0 that maximizes the log - likelihood expression

In this case L(0) is quite complicated because of two types of observations

(Ti's and T:'s), and excessive number of parameters in the model. This is an interesting

problem. I plan to continue working on this problem and try to complete the problem

during summer 96.
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